
Mixed-signal Neural Decoder

Anil Bilgin, Cody Yang, Rebekah Zhao

Motivation

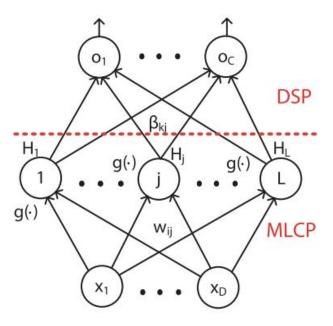
- Neural Decoding: reconstruction of sensory stimuli from recorded neural information.
- Applications: brain-machine interface, prosthetics, understanding of neurological disorders (epilepsy)

Neuronal ensemble discharges

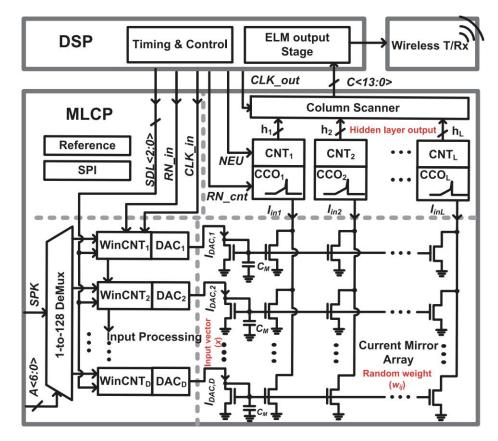
What we plan to achieve (I)

- A low power neural decoding ASIC suitable for implantation
- Why low power?
 - Low power elongates battery life
 - Too much power damages brain tissue (0.4 mW/mm² upper limit)
 - Tissue damage is correlated with temperature, so we should strive for lower power

What we plan to achieve (II)


- Why ASIC?
 - FPGAs tend to consume more power

Author	Implementation	Power
P. Wolf (2008)	Spike Sorting on FPGA	0.96 mW/channel
Moo Sung Chae et al (2009)	Spike feature extraction with DSP	46 μW/channel
Yi Chen et al (2016)	Mixed signal neural decoding	0.003 µW/channel


• FPGAs are not implantable, thus systems where most of the computation are done on FPGA require wireless data transfer

Extreme Learning Machine

- The algorithm:
 - Single hidden layer feedforward neural network
 - Hidden layer implemented on a machine learning coprocessor (MLPC)
 - Input layer weights generated randomly from mismatch of current mirrors
 - Output layer implemented on DSP processor

Chip level implementation

Design Process

- Data acquisition: Spike train data available from online sources
 - Data set recorded from anterior lateral motor cortex of mice
 - Data set contains 32 channels
- Software: Implement ELM in software first so later we can verify our hardware works
 - MATLAB
- Verilog-AMS level implementation: Translate the algorithm into hardware
 - Write good verilog

Design Process cont.

- Circuit level design: Replace verilog components with transistor level schematics
- Verification: Collect hidden layer output from chip and simulate output layer on software to verify trained data
- Layout: Once schematic has been simulated and verified, implement custom layout to minimize area

Specifications

Process technology	45nm GPDK	Target area	5 mm ²
Target power/area	0.4mW/mm ²	VDD	1.2V analog, 1V digital
Spike train channel number	32	Clock frequency	50 Hz
Maximum spike train frequency	640 Hz	Sampling window	100 ms
Window counter resolution	6 bits	DAC resolution	6 bits
Hidden layer node number	128		